Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Acta Physiologica Sinica ; (6): 59-66, 2022.
Article in Chinese | WPRIM | ID: wpr-927581

ABSTRACT

Vascular endothelial growth factor-A (VEGF-A) is a critical angiogenic factor which is mainly secreted from podocytes and epithelial cells in kidney and plays an important role in renal pathophysiology. In recent years, functions of different isoforms of VEGF-A and the new secretion approach via extracellular vesicles (EVs) have been identified. Thus, further understanding are needed for the role of VEGF-A and its isoforms in renal injury and repair. In this review, we summarized the expression, secretion and regulation of VEGF-A, its biological function, and the role of different isoforms of VEGF-A in the development of different renal diseases. Meanwhile, the research progress of VEGF-A as diagnostic marker and therapeutic target for renal diseases were discussed.


Subject(s)
Humans , Kidney/metabolism , Kidney Diseases , Protein Isoforms/metabolism , Vascular Endothelial Growth Factor A/physiology
2.
Acta cir. bras ; 37(7): e370704, 2022. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1402971

ABSTRACT

Purpose: To evaluate the ameliorative effect of mesenchymal stem cells (MSCs) on acetic acid colitis model via Nrf2/HO-1 pathway in rats. Methods: In this study, 30 rats were divided into three groups. Acute colitis was induced by rectal administration of 4% solution of acetic acid. MSCs were injected intraperitoneally in the treatment group. Results: Increased levels of tumor necrosis factor-α (TNF-α), pentraxin-3, and malondialdehyde (MDA) in colitis group were revealed biochemically. Increased level of TNF-α and decreased levels of Nrf2 and interleukin-10 (IL-10) were observed in rectum tissues. Increased fibrous tissue proliferation, vascularization and inflammatory cell infiltration were described in the colitis group. Significant improvement was observed in MSCs treated group histopathologically. Increased immunopositivity of TNF-α, vascular endothelial growth factor (VEGF) and CD68 markers was observed in the colitis group cells, and decreased level of this positivity was observed in MSCs treated group. Conclusions: Biochemical, histopathological and immunohistochemical results strongly support the ameliorative effect of MSCs against acetic induced colitis model via Nrf2/HO-1 pathway in rats.


Subject(s)
Animals , Rats , Colitis/veterinary , Acetic Acid/adverse effects , Vascular Endothelial Growth Factor A/physiology , NF-E2-Related Factor 2 , Mesenchymal Stem Cells
3.
Braz. oral res. (Online) ; 32: e48, 2018. tab, graf
Article in English | LILACS | ID: biblio-952159

ABSTRACT

Abstract The aim was to investigate the angiogenic effects of concentrated growth factors on human dental pulp cells and human umbilical vein endothelial cells. Cells were treated with concentrated growth factor extracts. The CCK-8 assay and cell cycle assay were conducted to evaluate cell growth. Cell migration was evaluated by the Transwell migration assay. Angiogenesis-associated mRNA and protein expression levels were determined using quantitative real-time PCR and Western blotting, respectively. A tube formation assay was conducted to evaluate the angiogenic capacity in vitro. The data showed that compared with the control, concentrated growth factor extracts significantly promoted dental pulp cell proliferation and differentiation and endothelial cell proliferation and migration in a dose-dependent manner (p < 0.05). Concentrated growth factor extracts also promoted the tube-like structure formation of endothelial cells in vitro. The RT-PCR and Western blot results showed that concentrated growth factor extracts upregulated the expression of angiogenesis-related genes - chemokine receptor-4, platelet-derived growth factor, and vascular endothelial growth factor - in dental pulp cells. In conclusion, concentrated growth factors showed proangiogenic effects on dental pulp cells and endothelial cells and have good application potential for dental pulp revascularization.


Subject(s)
Humans , Male , Adult , Neovascularization, Physiologic/physiology , Intercellular Signaling Peptides and Proteins/physiology , Dental Pulp/cytology , Human Umbilical Vein Endothelial Cells/physiology , Reference Values , Time Factors , Platelet-Derived Growth Factor/analysis , Platelet-Derived Growth Factor/physiology , Cell Cycle/physiology , Cells, Cultured , Blotting, Western , Reproducibility of Results , Analysis of Variance , Receptors, CXCR4/analysis , Receptors, CXCR4/physiology , Intercellular Signaling Peptides and Proteins/analysis , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor A/physiology , Cell Proliferation/physiology , Cell Migration Assays , Real-Time Polymerase Chain Reaction
4.
Braz. j. med. biol. res ; 51(2): e6768, 2018. graf
Article in English | LILACS | ID: biblio-889019

ABSTRACT

This study aimed to investigate the mechanism of hypoxia-inducible factor-1 alpha (HIF-1α) mediated hypoxia-induced permeability changes in bladder endothelial cells. Models of in vitro hypoxic cell culture of bladder cancer, bladder cancer cells with low HIF-1α expression and HIF-1α RNA interference (RNAi) expression vector were established. Western blot and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of HIF-1α and vascular endothelial growth factor (VEGF) in each group. Bladder cell permeability was determined. Results showed that protein and mRNA expression of HIF-1α and VEGF at 3 and 12 h of hypoxia were significantly higher than normal control (P<0.05), and peaked at 12 h. HIF-1α and VEGF expression in the hypoxic group and hypoxic+3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1) group were significantly higher than normal control (P<0.05), while expression in the hypoxic+YC-1 group was significantly lower than the hypoxic group (P<0.05). Bladder cell permeability in the hypoxic and hypoxic+YC-1 group were significantly increased compared to normal control (P<0.05), while in the hypoxic+YC-1 group was significantly decreased compared to the hypoxic group (P<0.05). Most of the cells in the stably transfected HIF-1α RNAi expression vector pcDNA6.2-GW/EmGFP-miR-siHIF-1α expressed green fluorescence protein (GFP) under fluorescence microscope. pcDNA6.2-GW/EmGFP-miR-siHIF-1α could significantly inhibit HIF-1α gene expression (P<0.05). HIF-1α and VEGF expression in the hypoxic group and siHIF-1α hypoxic group were significantly higher than normal group (P<0.05), while expression in the siHIF-1α hypoxic group was significantly lower than the hypoxic group (P<0.05). Findings suggest that HIF-1α is an important factor in the increase of bladder cancer cell permeability.


Subject(s)
Animals , Rats , Urinary Bladder Neoplasms/metabolism , Endothelial Cells/physiology , Vascular Endothelial Growth Factor A/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Tumor Hypoxia/physiology , Permeability , Gene Expression Regulation, Neoplastic/physiology , Blotting, Western , RNA Interference , Cell Line, Tumor , Endothelial Cells/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/analysis , Real-Time Polymerase Chain Reaction
5.
Arq. bras. cardiol ; 104(3): 185-194, 03/2015. tab, graf
Article in English | LILACS | ID: lil-742788

ABSTRACT

Background: Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. Objective: To evaluate the vascular response of the tetraamines trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO) (cyclan)](PF6)2, and trans-[RuII(NH3)4(4-acPy)(NO)]3+. Methods: Aortic rings were contracted with noradrenaline (10−6 M). After voltage stabilization, a single concentration (10−6 M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10−6 M and sodium nitroprusside at 10−6 M as well as by histological examination. Results: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. Conclusion: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10−6 M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan ...


Fundamento: As tetra-aminas de rutênio cada vez mais se destacam como carreadoras da molécula de óxido nítrico. Desse modo, estudos farmacológicos tornam-se altamente relevantes, afim de melhor compreender o mecanismo de ação envolvido. Objetivo: Avaliar a resposta vascular das tetra-aminas trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO)(Cyclan)](PF6)2 e trans-[RuII(NH3)4(4-acPy)(NO)]3+. Métodos: Anéis de aorta foram pré-contraídos com noradrenalina (10-6M). Após estabilização da tensão, concentração única (10-6M) dos compostos foi adicionada ao banho de incubação. As respostas foram registradas ao longo de 120 minutos. A integridade vascular foi avaliada funcionalmente (acetilcolina 10-6M; nitroprussiato de sódio 10-6M) e histologicamente Resultados: A análise histológica confirmou a presença ou não de células endoteliais nos tecidos analisados. Todos os complexos alteraram a resposta contrátil induzida pela noradrenalina, resultando em aumento de tônus seguido de efeito relaxante. Em anéis com endotélio, a inibição do óxido nítrico endotelial causou redução do efeito contrátil da piridina óxido nítrico. Não foram observadas respostas significativas em anéis com endotélio referente ao composto cyclan óxido nítrico. Por outro lado, em anéis sem endotélio, a inibição da guanilato ciclase reduziu significativamente a resposta contrátil dos complexos piridina óxido nítrico e cyclan óxido nítrico, levando ambos os compostos a um efeito relaxante. Conclusão: Os resultados obtidos demonstram que o efeito vascular dos complexos avaliados apresentaram diminuição no tônus vascular induzido pela noradrenalina (10-6M) ao final do tempo de incubação, em anéis com e sem endotélio, indicando liberação lenta da molécula de óxido nítrico do composto estudado e sugerindo que os ligantes causaram estabilidade química à molécula. Demonstramos que a ligação rutênio óxido nítrico é mais estável quando utilizamos os ligantes piridina e cyclan para a formulação ...


Subject(s)
Animals , Humans , Mice , Apoptosis/physiology , MicroRNAs/physiology , Endothelial Cells/physiology , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Molecular Targeted Therapy/methods , Neoplasms/physiopathology , Ribonuclease III/deficiency , Ribonuclease III/physiology , Up-Regulation , Vascular Endothelial Growth Factor A/physiology
6.
Arq. bras. endocrinol. metab ; 55(2): 106-113, mar. 2011. tab
Article in Portuguese | LILACS | ID: lil-586493

ABSTRACT

A retinopatia diabética (RD) é uma complicação microvascular do diabetes melito, sendo importante causa de cegueira adquirida. Fatores angiogênicos, como o vascular endothelial growth factor (VEGF), estão envolvidos na patogênese da RD. O VEGF-A é uma citocina potente e multifuncional que atua por meio dos receptores VEGFR-1 e VEGFR-2 expressos no endotélio vascular causando aumento da permeabilidade vascular e estímulo à neovascularização em processos fisiológicos e patológicos. O VEGFR-2 é o principal mediador mitogênico, angiogênico e do aumento da permeabilidade vascular. Alguns polimorfismos do VEGF têm sido estudados na suscetibilidade e risco de progressão da RD. Importante associação entre o polimorfismo 634C/G e a presença de RD é relatada principalmente em relação ao alelo C. A homozigose CC estaria relacionada à RD proliferativa (RDP) e a níveis sérico e vítreo aumentados de VEGF, sugerindo que a presença do alelo C seja um fator de risco independente para RD. Os conhecimentos sobre o VEGF levaram ao desenvolvimento de agentes antiVEGF com o objetivo de inibir a neovascularização patológica e são uma realidade na prática médica do tratamento da RD.


Diabetic retinopathy (DR), a DM microvascular complication, is the leading cause of blindness. Angiogenic factors such as vascular endothelial growth factor (VEGF) are involved in the pathogenesis of DR. VEGF-A is a potent, multifunctional cytokine that acts through the receptors VEGFR-1 and VEGFR-2 expressed in the vascular endothelium and causing increased vascular permeability and neovascularization stimulation in both physiological and pathological processes. The expression of VEGFR-1 is upregulated by hypoxia and is less responsive to VEGF compared to VEGFR-2 which is the main mediator mitogenic, angiogenic, and increased vascular permeability. VEGF polymorphisms have been studied in DR susceptibility and progression. Significant association between the polymorphism 634C / G and the presence of RD is reported mainly in relation to allele C. The homozygous CC is associated to proliferative RD and to increased vitreous and serum levels of VEGF suggesting that the presence of the C allele is an independent risk factor for RD. The knowledgement of VEGF lead to the development of anti-VEGF drugs (pegaptanib, ranibizumab and bevacizumab) aiming to prevent pathological neovascularization. The anti-VEGF therapy is a reality in practice medical treatment of DR.


Subject(s)
Humans , Diabetic Retinopathy/etiology , Neovascularization, Pathologic/etiology , Vascular Endothelial Growth Factor A/physiology , Genetic Predisposition to Disease , Polymorphism, Genetic , Risk Factors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/physiology , /genetics , /physiology
7.
Rev. otorrinolaringol. cir. cabeza cuello ; 67(1): 7-12, abr. 2007. ilus, tab, graf
Article in Spanish | LILACS | ID: lil-475753

ABSTRACT

Introducción: La anglogenesis es el desarrollo de nuevos vasos sanguíneos desde una red vascular existente, contempla una secuencia de eventos complejos y es fundamental en el proceso reparativo. Existen múltiples factores estimulantes de la angiogénesls, entre ellos se encuentran factores de crecimiento como el VEGF (factor de crecimiento endotelio vascular). Debido a su rol reparativo se han utilizado factores proanglogénicos para reparar perforaciones timpánicas. Objetivo: Estudiar el efecto del VEGF sobre perforaciones timpánicas de ratas Long-Evans. Material y método: Se usan 15 ratas adultas, se realizan perforaciones timpánicas bilaterales, se instilan al azar las perforaciones con solución fisiológica y VEGF, se realiza visualización microscópica de los tímpanos a los días 9,15 y 21 posperforación. Las ratas son sacrificadas el día 21 y se realiza estudio histológico del grosor timpánico. Resultados: No se aprecia un efecto inductivo del VEGF sobre el cierre de las perforaciones timpánicas, se produce un aumento en el grosor timpánico de las ratas tratadas con VEGF.


Subject(s)
Animals , Rats , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/physiology , Neovascularization, Physiologic , Tympanic Membrane Perforation/metabolism , Tympanic Membrane Perforation/drug therapy , Angiogenesis Inducing Agents , Tympanic Membrane , Tympanic Membrane/metabolism , Tympanic Membrane/ultrastructure , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL